비의도적 농약오염 예방을 위한 노즐, 장비 성능평가 및 살포 규격 설정
Evaluation of nozzles and equipment for prevention of unpredictable pesticide contamination and development of pesticide application guidelines
Evaluation of nozzles and equipment for prevention of unpredictable pesticide contamination and development of pesticide application guidelines
With rising concerns about pesticide spray drifts, this study analyzed the drift patterns of two typically-used nozzles, XR nozzle and AI nozzle, concerning their working pressures and wind speeds by wind tunnel experiments. AI nozzle showed low drift potential with larger droplet sizes compared to XR nozzle. Airborne and deposition drifts of XR nozzle were two times higher than those of AI nozzle under high wind speeds (≥2 m/s). In all cases, higher working pressures decreased the droplet sizes, thereby increasing the airborne and deposition drifts. Higher wind speeds also resulted in more airborne drifts, while ground deposition was increased under lower wind speeds. These effects of working pressures and wind speeds on the airborne and deposition drifts were observed at leeward distances less than 4 m from the nozzles. However, the airborne and deposition drifts were barely affected by the working pressures and wind speeds at leeward distances more than 11 m. The measurements were fitted to regression models of the drift curve with acceptable R2 values greater than 0.8, demonstrating that further studies will be useful to settle domestic issues of spray drifts.
Pesticide application is essential for improving crop productivity; however, undesirable pesticide drift must be mitigated because of its adverse impacts on humans, the environment and ecosystems. The collection and accurate quantification of airborne droplets are key elements involved in identifying the spatial and temporal dispersion of off-target spray movement. Various types of passive and active collectors have been deployed to measure airborne spray drift; however, the collection efficiencies of only a few samplers have been verified. This study evaluated the collection efficiency of two airborne-spray-drift collectors using an experimental drift wind tunnel. The airborne spray drifts were quantified by a total organic carbon analyser and validated by comparison to measurements using liquid chromatography with tandem mass spectrometry. Computational fluid dynamics (CFD) simulations were used to explore the effects of droplet size and wind speed on the collection performance. It was found that nylon screens, passive samplers, captured 57.9–88.1% of the airborne spray drift. These results are considered reliable and are comparable to those found in the literature. Additionally, the CFD results demonstrated that the collection efficiency increased with droplet diameter. An increase in wind speed improved the collection efficiency of fine droplets (≤100 µm diameter); however, wind speed had no significant influence on the collection of coarse droplets. These measurements, alongside the aerodynamic approach adopted in this study, can provide a comprehensive understanding of the collection performance of nylon screens.
Spray drift can be controlled by various operations and managements including application height, flight path, vegetation, setback distance, etc.